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Abstract—The interaction of fluid flow in a bulk liquid with phase 

transformation at the solid-liquid interface can create new frontal 

instabilities. In the absence of flow in the liquid, it is well known 

that the fundamental building block of the morphological 

instability of a solidification front is the Mullins-Sekerka theory, 

which gives conditions for the growth of infinitesimal 

disturbances of a solid-liquid interface. However, little is known 

about morphological instability of solidification front in crystal 

growth from a thin film of flowing liquid. One such example is 

ring-like ripples on icicles. The ripples always measure about one 

cm from peak to peak. The water film covering the surface of 

icicles is very thin, with a water-air surface on one side and 

growing ice on the other. This is one of the more complicated 

moving boundary problems with phase transition. Recently, 

Ogawa and Furukawa developed an initial theoretical model that 

explains the surprisingly universal structures of ripples on icicles. 

A completely different ripple formation mechanism has been 

proposed by the author herein (Ueno). In this new morphological 

instability theory, the influence of the shape of the liquid-air 

surface on the growth conditions of disturbances of the solid-

liquid interface was taken into account for the first time. In a cold 

room at a temperature below zero degrees, we experimentally 

produced a ripple pattern of ice on the surface of a round wooden 

stick and that of a gutter on an inclined plane at various angles  

with regard to the horizontal plane, and water was supplied at 

various rates from their tops. The purpose of this paper is to 

compare some of the predictions derived from two theories with 

experimental results. 

I.  INTRODUCTION 

CICLES grow when they are covered with supercooled 

water and most of the latent heat is released through the film 

into the ambient air below 0 o C.  During icicle growth, ring-

like ripples are often observed on the surface of icicles, as 

shown in Fig. 1. The wavelength of ripples for natural icicles 

is always around one centimeter [1]. Although this is a familiar 

phenomenon for people in cold regions, the ripple formation 

mechanism is still not well understood.  

The Mullins-Sekerka (MS) theory predicts the wavelength 

of the most unstable mode from the maximum growth rate for 

initial disturbances [2]. At a convex part indicated by A in Fig. 

2 (a), latent heat escaps more easily by diffusion because the 

temperature gradient at the bulge surface area is large, hence 

this part grows fast. While, a concave part indicated by B in 

Fig. 2 (a) grows slowly because the temperature gradient is 

small. According to the Gibbs-Thomson (GT) effect, the 

temperature of the convex part A is depressed by im TTT −=∆  

due to the curvature of the solid-liquid interface, as shown in 

Fig. 2 (b). Therefore the growth rate of this bulge part 

becomes smaller because the degree of supercooling reduces 

from ∞−TTm to ∞− TTi . Here mT , iT  and ∞T  are the 

equilibrium melting temperature, the solid-liquid interface 

temperature at point A, and temperature at infinity, 

respectively. This tendency counteracts the enhanced freezing 

at the bulges. As a result of competition between 

destabilization due to thermal diffusion and stabilization due to 

the GT effect, a pattern with a specific wavelength of 

032 dldMS πλ ≈  is developed, as in Fig. 2 (c) [3], [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Ripples on icicles hanging from the roof (air temperature: 10− o c; 

wind: 0 km/h; 10:00 a.m., Feb 25, 2009, Chicoutimi, Canada). 

 

It should be noted that MSλ contains the thermal diffusion 

length Vl ld /κ=  and  the capillary length 2
0 / LCTd plmΓ=  

associated with the solid-liquid interface tension Γ , where 

V is the mean crystal growth velocity and lκ  is the thermal 

diffusivity of the liquid, plC  is the specific heat at constant 

pressure of the liquid, and L  is the latent heat of solidification 
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per unit volume. dl  is the thickness of an accumulation layer 

of the latent heat released by solidification, as shown in Fig. 2 

(b). dl  is usually of macroscopic length, which is about 10 cm 

in the case of water and for 610~ −
V m/s. On the other hand, 

0d  is a microscopic length of the order of angstroms.  Hence, 

MSλ  is in the order of microns [3], [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 2.  Schematic illustration of the Mullins-Sekerka instability. 

 

We often see traveling waves of a thin water layer on an 

inclined substrate as in Fig. 3 (a). The stability analysis of a 

laminar flow of such a viscous liquid running down an inclined 

plane was examined [5]. In this case, as shown schematically 

in Fig. 3 (b), one side of the liquid film is a free surface and 

the other side is a rigid plane. During the growth of an icicle, a 

thin film of water from melting snow and ice above the icicle 

flows along the hanging shaft and refreezes onto the its 

surface. However, it should be noted that during the liquid  

flow accompanying a phase transition, the solid-liquid 

interface may not remain flat when a morphological instability 

occurs as in Fig. 3 (c).  As a result, the flow in the liquid film 

can  change depending on the shape of the solid-liquid 

interface. 

There are some critical differences in situations between Fig. 

2 (a) and Fig. 3 (c). The liquid region is assumed to be semi-

infinite in Fig. 2 (a) while the liquid in Fig. 3 (c) is a flowing 

water film with a free surface. In the latter case, we cannot 

neglect the effect of disturbances of the water-air surface on 

the growth conditions of disturbances on the ice-water 

interface. Since the typical thickness of water film flowing 

down the surface of icicles is about 100 µ m, the thermal 

diffusion layer cannot be formed in the water film. 

Furthermore, we do not need to consider the GT effect because 

the temperature depression due to the curvature effect can be 

neglected for the typical wavelength of ripples on icicles. 

Therefore, we have to consider different characteristic lengths 

from dl and  0d in the MS theory, and to develop a quite new  

mechanism for ripple formation on icicles. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) Waves running down an inclined substrate. (b) and (c) are 

schematic views of  a water film flowing down along a substrate to the 

horizontal at angle θ  driven by gravity. g  is the gravitational acceleration 

(b) is the water flow on the rigid plane and (c) is the ice growth from a thin 

film of flowing supercooled water. The air temperature, aT , is below 0 o C 

and ∞= TTa  at a distance of δ  from the flat water-air surface. Since the 

actual thickness of the water film is very thin compared to the typical 

wavelength of ripples, we draw the thickness of water film exaggeratedly. 

 

An initial theoretical attempt to explain ripple formation on 

icicles was recently made [6]. According to their stability 

analysis of the ice-water interface, the instability of the ice-

water interface occurs by the Laplace instability due to thermal 

diffusion into the air: the latent heat is more rapidly lost from 

the convex surfaces than that from the concave surfaces in Fig. 

3 (c). This makes ice grow faster on the convex protrusions of 

an icicle than on the concave indentations [6], [7]. And flow in 

the thin water film makes the temperature distribution uniform, 

which inhibits the Laplace instability. Using a mathematical 

model for the competition between those trends, they 

calculated that the spacing between bulges for any icicle 

should be 5 to 13 mm. They also predicted that the ripples 

should migrate downward.  

A quite different ripple formation mechanism was proposed 

by the author herein [8]-[10]. At the inclination angle of 

2/πθ = , the author derived a formula to determine the 

wavelength of ripples: 3/1
0

2 )3/(2 lPehaπλ ≈ , where 

2/1)]/([ ga lργ=  is the capillary length associated with the 

surface tension γ of the ice-water interface [11], lρ  the 

density of water, and lPe   the Peclet number which is the ratio 

of heat transfer due to water flow to that due to thermal 

conduction in the water film. The author also predicted that the 

ripples should migrate upward.  

The analytical calculations to solve the governing equations 

with appropriate boundary conditions in these previous papers 

were very complicated and cumbersome despite the fact that 
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many approximations were used. The purpose of this paper is 

to compare the results obtained from the two theories by 

solving equations numerically with no approximations, and to 

verify the validity of the theoretical predictions by 

experiments.  

II. THEORY 

The theoretical analysis is assumed to be restricted to two-

dimensional vertical cross-sections ),( yx , as shown in Fig. 3 

(c). The x -axis is parallel to the inclined plane, and the y - 

axis is normal to it. In the case of laminar flow, 0h  can be 

expressed by 3/1
0 ]/)sin/(3[ lQgh l θν= [5], [11], where lν  is 

the kinematic viscosity of water, g , the gravitational 

acceleration, lQ / [(ml/h)/cm], the water supply rate per width 

from the top, and θ  is the angle of the inclined plane. For 

typical values of lQ /  [1], 0h  is ~100 µ m. For simplicity, we 

assume that the region of ice is regarded as extending to semi-

infinite because the water film is very thin, and that there is no 

airflow ahead of the water-air surface. 

Since there is no noticeable azimuthal variation on the ring-

like ripples, as in Fig. 1, we assume only a one-dimensional 

perturbation of the ice-water interface in the x  

direction: ]exp[),( ikxtxt k += σζζ , where k  is the wave 

number and )()( ir
iσσσ += , with )(rσ  being the 

amplification rate and ki
p /v )(σ−≡  being the phase velocity 

of the perturbation, and kζ  is a small amplitude of the ice-

water interface. The calculation is based on a linear stability 

analysis taking into account only the first order of kζ [8]. 

Since the theoretical framework in the absence of airflow is 

the special case of that described in paper [12], we omit the 

detailed derivation of the dispersion relation for disturbances 

of the ice-water interface. The real and imaginary parts of the 

dispersion relation yield the dimensionless amplification rate 

)//( 0
)()(

* hV
rr σσ ≡  and the dimensionless phase velocity 
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where 0* / hyy = , 0khl ≡µ , ls KKn /=  is the ratio of the 

thermal conductivity of ice to that of water, V is the mean 

growth rate of ice in the normal direction.
)(r

lH  and 
)(i

lH  are 

the real and imaginary parts of the amplitude lH  of the 

perturbed part of temperature in the water film, which is 

governed by [8] 
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where )2()( 2
**** yyyUl −−=  is the dimensionless velocity 

profile in the water film in the unperturbed state, which is 

derived from the no-slip condition at the ice-water interface 

and the free shear stress at the water-air surface [5], [11]. We 

note that the sign of *lU  is opposite to that found in the 

previous papers [8]-[10] because the direction of the x  axis in 

Fig.3 (c) is opposite. **** )/())(()( yTTTyTyT laslslll −=−−≡  

is the dimensionless temperature profile of the water film in 

the unperturbed state. slT  and laT  are the temperature of the 

ice-water interface and that of the water-air surface, 

respectively. )2/(3/00 llll lQhuPe κκ =≡  is the Peclet 

number, 0lu being the surface velocity of the water film. lf  on 

the right hand side of  (3) is the amplitude of the perturbed part 

of the stream function in the water film and is governed by the 

Orr-Sommerfeld equation [8]: 
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where )2/(3/Re 00 llll lQhu νν =≡  is the Reynolds number.  

In the absence of airflow, (34) in [12] reduces to 

aaa HdYHd 22
*

2 / µ= , where 0δµ ka ≡ , 0δ is a length scale 

characterizing the thickness of thermal boundary layer. With 

the boundary conditions 1| 0*
==YaH and 0|

*
=∞=YaH , the 

solution is )exp( *YH aa µ−= . Therefore, the perturbed part 

of the air temperature gradient at the water-air surface defined 

by (35) in [12] yields lYaa dYdHhG µδ =−≡′ = )|/(/ 0*00 *
. 

Hence, the boundary conditions for lH  in (39) and (40) in 

[12] and those for lf can be expressed as 
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where 32
0 )/(sin/2)(cot2 ll ha µθµθα += , in which the 

effect of restoring forces due to surface tension and gravity 

force on the water-air surface is included [8], [10].  
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III. COMPARISON OF TWO THEORETICAL MODELS 

Decomposing lH  and lf  into the real parts 
)(r

lH , 
)(r

lf  

and the imaginary parts 
)(i

lH , 
)(i

lf  and noting that 

1| 1* *
−==ylU , 2|/ 0** *

−==yl dyUd  and 2|/ 1
2
**

2

*
==yl dyUd , 

we solve numerically (3) and (4) with boundary conditions (5) 

and (6) without using the long wavelength approximation. The 

results are shown by the solid lines in Figs. 4 (a) and (b). Our 

amplification rate 
)(

*
rσ in Fig. 4 (a) acquires a maximum value 

at 061.0=lµ . This is the most unstable mode of disturbance 

of the ice-water interface, from which we define the 

wavelength of ripple. Since the wave number k  is normalized 

by 0h , the corresponding wavelength is 9.4 mm from 

lh µπλ /2 0=  for 50/ =lQ [(ml/cm)/h] and 2/πθ = . At 

061.0=lµ , the magnitude of phase velocity  is 59.0v * =p  

from Fig. 4 (b). As shown in Fig. 4 (c), the amplitude of an 

initial infinitesimal disturbance increases and moves upward 

with time. It should be noted that this picture cannot be 

understood by the Mullins-Sekerka or the Laplace instability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  For lQ / =50 [(ml/h)/cm] and 2/πθ = , (a) represents dimensionless 

amplification rate 
)(

*
rσ  versus dimensionless wave number lµ , (b) 

represents dimensionless phase velocity *v p  versus dimensionless wave 

number lµ . Solid lines in (a) and (b) are numerical results with the boundary 

conditions in [8]; dashed lines are numerical results calculated by us with the 

boundary conditions in [6]. (c) Schematic illustration of time development of 

an initial disturbance of the ice-water interface.  

 

The main difference between the model found in [6] and [8] 

is found in the different boundary conditions. In the Ogawa 

model, the continuity conditions mysyl TTT == == ζζ || at the 

ice-water interface were adopted, where mT  is the equilibrium 

freezing temperature. This corresponds to the condition 

1| 0*
==ylH  in our theoretical framework. They also neglected 

the effect of restoring forces on the water-air surface. 

In order to check the validity of the approximations used in 

the model found in [6], we solve numerically the same 

ordinary differential equations with the boundary conditions 

by replacing only the first equation in (5) with 1| 0*
==ylH , 

and by neglecting the effect of restoring force, e.g. putting 

0=α  in the last equation in (6). The results are shown by the 

dashed line in Figs. 4 (a) and (b). Our numerical calculation 

shows that the length scale of ripples cannot be determined 

from their model because 0
)(

* >rσ  for any wave number. This 

indicates that the ice-water interface does not have any 

stability mechanism. Therefore, we cannot accept the 

analytical results in [6] and the corresponding interpretation 

for the ripple formation mechanism. 

IV. EXPERIMENTAL RESULTS 

We experimentally produced ripple pattern similar to icicles 

on an inclined wooden gutter on a plane (Fig. 5 (a)) and a 

wooden round stick (Fig. 5 (b)) with a length of 80=xl  cm in 

a cold room. Water was pumped from the reservoir and 

dripped from the tip of the silicon tube at the rate Q ml/h. The 

temperature of the dripping water was controlled to be slightly 

above 0 o C.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  (a) is an inclined gutter 80 cm in length, 3=l cm in width and 2.5 cm 

in depth. (b) is a stick 80 cm in length and 6mm in diameter. Water 

drips from the tip of the silicon tube covered with a band heater at the 

water supply rate Q ml/hr and flows down along the gutter and stick. 

 

All instruments were set in a box, as shown in Fig. 6 (a), and 

were protected by a heating device in order to prevent the 



IWAIS XIII, Andermatt, September 8 to 11, 2009 

water from freezing in the silicon tube. In the absence of a 

cover of the box, large temperature fluctuations between 

4− o C and  13− o C  were observed in the box, as shown in 

Fig. 6 (c). This is due to the three ceiling fans of the cold room 

seen in Fig. 6 (b). These fans keep the temperature in the cold  

room uniform by automatically switching on and off 

periodically. On the other hand, in the presence of the cover on 

the box, the temperature fluctuations were reduced to between 

7− o C and  9− o C,  as shown in Fig. 6 (c). Our experiments 

were conducted with the large temperature fluctuations 

because ice appears to grow faster when there is air movement. 

Figure 6 (d) shows the radius growth rate V of icicles  

produced on the 6 mm-diameter round stick against various 

water supply rates. It is found that it is almost independent of 

the water supply rate.  The mean value is 1.7 mm/h.  
 

 
 
Fig. 6.  (a) A box with a cover in a cold room. (b) Fans equipped with the 

ceiling of the cold room. (c)  Temperature fluctuations  in the box. Large and 

small fluctuations are in the absence and presence of the cover of the box, 

respectively.  (d) The radius growth rate V of icicles produced on a round 

stick at various water supply rates Q . 

 

A portion of the supplied water freezes and the rest flows 

down the ice surface. Therefore, lQ / in 0h , lPe  and lRe  

should be replaced by xls lVlQ )/(/ ρρ−  from the mass 

conservation, where sρ  and lρ  are the densities of ice and 

water, respectively. The theoretical curves in Figs. 7 and 8 

were obtained using the values of ls ρρ / =0.9, 80=xl  cm 

and V =1.7 mm/h under the assumption that ice is completely 

produced along the gutter on a plane, from top to bottom.  

The solid and dashed lines in Fig. 7 (c) shows the theoretical 

dependence of the wavelength of ripples on the angle of the 

inclined plane at xls lV)/(3/160 ρρ−  [(ml/h)/cm] and 

xls lV)/(100 ρρ−  [(ml/h)/cm], respectively. Figs. 7 (a) and 

(b) show the ripples of ice produced on the gutter at small and 

large angles, respectively. The experimental results (△and ●) 

at 3/160/ =lQ [(ml/h)/cm] in Fig. 7 (c) show that the 

wavelength of ripples increases with a decrease in angle, 

which is in good agreement with the theoretical result at 

xls lV)/(3/160 ρρ−  [(ml/h)/cm] (solid line) except for the 

small angle. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  (a) and (b)  are ripples produced on the gutter at small and large 

angles, respectively. (c) The wavelength of ripples versus θsin  at 

xls lV)/(3/160 ρρ−  [(ml/h)/cm] (solid line) and xls lV)/(100 ρρ−  

[(ml/h)/cm] (dashed line). △ and  ● are experimental result at 3/160/ =lQ  

[(ml/h)/cm] by  Matsuda [13] and ours, respectively. 

 

  The measured wavelengths of ripples of ice produced in 10 

hours on the round stick for 100=Q , 200 and 300 ml/h and 

the gutter on a plane at 2/πθ =  for 55=Q , 100, 150, 200, 

250 and 300 ml/h are shown by ●  and ■ in Fig. 8, 

respectively. The theoretical dependence of the wavelength of 

ripples on various lQ /  at 2/πθ = is shown in Fig. 8 by the 

solid and dashed lines. The solid line is the numerical result 

with no approximation, while the dashed line is obtained from 

the approximate formula  3/1
0

2 )3/(2 lPehaπλ =  , with the 

replacement lQ /  by xls lVlQ )/(/ ρρ− . Our theoretical 

results show that the wavelength increases gradually with an 
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increase in lQ / . The experimental results (●and ■) show 

weaker dependence of wavelength on lQ /  than expected 

from the theoretical results, but qualitative behavior and the 

order of wavelength is almost the same.  

In our experiment, the water supply rate Q  from the top is 

kept constant. In the case of the gutter on a plane, the width l  

is constant. Therefore, the value of lQ /  is not time dependent. 

However, in the case of ice produced on the round stick, the 

value of lQ / decreases as ice grows because the value of l  

increases with time t  as )(2 0 tVR +π  under the assumption 

that ice grows uniformly at V , where 0R  is the radius of the 

stick. When plotting the values of wavelengths for ●in Fig. 8, 

we estimated the value of )(2 0 tVRl += π  from 30 =R mm, 

7.1=V mm/h and 10=t h.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.  The wavelength versus lQ /  at 2/πθ = . Solid line: numerical 

results; dashed line: 3/1
0

2 )3/(2 lPehaπλ =  [10];  ●, ■: wavelength of 

ripples of ice produced on a round stick and gutter in 10 hours in our 

experiments, respectively. 

 

As indicated in Fig. 4 (b), our theory predicts that ripples 

move upward with *v p = pv /V  ≈ 0.6 at 200=Q  ml/h. When 

we use the measured value of V =1.9 mm/h at 200=Q  ml/h 

in Fig. 6 (d), pv  ≈  1.14 mm/h, the theoretical displacement is 

about 5.7mm for 5 hours. As shown by the white dashed lines 

in Fig. 9, all protruding parts on the right hand side of an icicle 

move upward. The measured mean displacements over 5 hours, 

shown in Fig. 8 is about 5 mm. This observation is consistent 

with the picture shown in Fig. 4 (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 9.  Upward movement of ripples of ice produced on a 6 mm-diameter 

round stick, after time 5 (left) and 10 (right) hours at 200=Q  ml/h. The 

mean displacement of ripples is about 5 mm over 5 hours. 

V. CONCLUSIONS 

Two theoretical models for ripple formation mechanism on 

icicles developed in [6] and [8] were compared numerically 

based on our theoretical framework. We could not obtain the 

same results as the analytical results in model [6] despite 

solving the same governing equations with the same boundary 

conditions. Our numerical results obtained without employing 

the approximations used in model [8] were qualitatively in 

good agreement with our experimental results.  
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